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S"suppresses the first harmonics in flapping, the effect of turbulence, as

measured by the standard deviation of system response, is of the same order
of magnitude as the second harmonics in the deterministic (i.e. an idealized

* turbulence-free) solution. ,
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Problem Description

In the service life of a helicopter, numerous encounters with clear-air

p or thunderstorm turbulence can be expected. Furthermore, because of the very

nature that lift is generated by blade rotation, some level of self-created

turbulence is also unavoidable. Therefore, random turbulence in the

atmosphere should be included in a realistic analysis of helicopter dynamics.

The theoretical investigation reported in this document is concerned with

*the behavior of rotor blades in a turbulent flow. Specifically, answers are

sought to two questions: (1) how does turbulence affect the motion stability

of a blade system? (2) if the motion is stable, then by what amount does it

deviate from that computed from a deterministic analysis in which the

turbulence is ignored?

Mathematical Models

A. Structural Models

A-1. Three types of motion are considered: uncoupled flapping, coupled

flapping and torsion, coupled flapping and lagging.

pA-2. For flapping and lagging, the blades are assumed to be rigid and

centrally hinged, with elastic restraints at the hinge. The

degree of structural coupling between flapping and lagging is

represented by a coupling parameter.

A-3. For torsional motion, the blades are assumed to be elastic and

the torsional angle varies spanwise linearly.

A-4. The mass and elastic centers coincide along the one-quarter chord

line.

B. Aerodynamic Models

B-1. Flow is incompressible and sectionally two dimensional; i.e. the
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spanwise flow is neglected.

B-2. Forces acting on a blade are computed from the steady aerodynamic

theory for flapping and lagging notions, and from the quasi-

steady aerodynamic theory for torsional motion.
-. a

B-3. The lift slope is the same constant in the normal and reversed

flows.

B-4. Flow separation and stall do not occur.

C. Turbulence Model

C-i. Turbulence field is statistically stationary in time and

homogeneous in space; i.e. the statistical properties are

unchanged with respect to the change of time and spatial

coordinate orgins.

C-2. The speed of a rotor blade (rotation plus forward motion) is -much

greater than the convection speed of the turbulence; therefore,

the turbulence has a short correlation time when observed on a

noving blade.

These simplifying assumptions are made to enable a meaningful and useful

analysis of a complicated dynamic system to be completed with a reasonable

length of time, while capturing the essential features of the physical

phenomena involved.

* Summary of Important Results:

(1) Turbulence plays two distinct roles in rotor dynamics: (a) as parametric

"- excitations which affect the motion stability, and (b) as external

excitations which cause random deviation from the idealized motions

predicted by determinic analyses in which turbulence is ignored.

°a



3

(2) Parametric random excitations appear in the coefficients in the

equations of motion. In contrast, external excitations appear in the

inhomogeneous terms on the right hand sides of the equations.

(3) Uncoupled flapping and coupled flapping-torsion are essentially linear

phenomena for which the turbulence components in the plane of blade

rotation (horizontal components) are parametric and the turbulence

component normal to the rotational plane (vertical component) is

external.

(4) Horizontal turbulence components de-stabilize the uncoupled flapping and

coupled flapping-torsional motions. However, since these motions are

extremely stable for usual helicopter blade configuration and flight

conditions, the turbulence level must be unusually high in order for

unstable motion to occur.

* (5) Coupled flapping-lagging motion is nonlinear. However, turbulence

3 induced random perturbation from the idealized no-turbulence motion is

essentially linear. In the linearized equations for the perturbed

motion, the vertical turbulence dominates, and it appears both in the•
coefficients and as inhomogeneous term.

(6) The vertical turbulence component stabilizes the coupled flapping-

lagging motion by increasing the damping in the least-stable, lead-lag

mode. It has the same effect as an increase in the profile drag

coefficient.

(7) When a motion is stable, turbulence contributes to the random

fluctuation from the average system response. Under a trim condition

which suppresses the first harmonics of flapping response, the effect of

turbulence, as measured by the standard deviation of the response, is of

-4 the same order of magnitude as the second harmonics in the deterministic

N
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~ (i.e. idealized turbulence free) solution.

-A'(8) The constant coefficient approximation using the method of multiblade

coordinates yields essentially the same stability results whether one

time-averages both the stochastic and deterministic termsn or time-

averages only the stochastic term. The constant coefficient

approximation vas found to be accurate only for trimmed rotors.

For additional information, the reader is referred to the publications listed

in the next section.
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